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INTRODUCTION

The principal goal of this research effort has been to provide support for

the installation of simplified RELIEF (i) flow tagging instrumentation at

NASA-Langley Research Center. RELIEF is a double resonance velocimetry

technique in which oxygen molecules are vibrationally excited via stimulated

Raman scattering at a specific location within a flow field. After suitable

time delay, typically i-I0 microseconds, the displacement of the tagged

molecules is determined by laser-induced fluorescence imaging.

The current work has centered around characterization and optimization of a

high-pressure 02 stimulated Raman cell, which greatly simplifies the tagging

step. During the work period, conversion efficiency and spectral profile

measurements have been performed under a variety of conditions, and a 2 m

long cell has been installed at NASA-Langley.

has been performed on improvements to a

flashlamp, which was used, for the first

Additionally, limited work

high-intensity, ultraviolet

time, to obtain images of

vibrationally excited oxygen in a low-speed 02 jet. The ultimate goal of

this part of the effort is to find a substitute for the argon-fluoride laser

which is currently used for the laser-induced fluorescence interrogation

step.



REVIEW OF WORK PERFORMED

A. Characterization of Stimulated Raman Cell

i. Conversion Efficiency

The vibrational tagging step requires two high power laser beams with

frequency difference equal to the vibrational frequency of oxygen. In the

original RELIEF experiments, the second laser beam was derived from the

first using a dye laser. This required that the primary laser beam be

split into two parts, one of which pumped the dye laser and, subsequently,

that the two beams be recombined. The two laser beams had to be overlapped

in time, space, and frequency, and the primary beam had to be powerful

enough to pump the dye laser, which is not a particularly efficient process.

Recently (2), we have developed a high pressure 0 2 stimulated Raman cell

which directly converts a portion of the primary beam to the desired second

wavelength. The two beams exit the cell automatically matched in frequency

and time, and with excellent spatial overlap.

In the last year, we have worked to optimize the Raman cell conditions by

studying a variety of configurations. The results of these studies are

summarized in Table I. As can be seen, three different cells have been

examined. The first is a rather conventional 2 m long cell, which has been

studied with a variety of focusing lenses in both single and double-pass

modes. The second is a 6 m long cell, and the third is a i m long,

cylindrical optics, multi-pass cell. We will now discuss these cells in

more detail.
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a. 2-Meter Cell

The 2 m cell has been studied in most detail because it is the simplest to

both construct and to use in commonlaboratory environments. It has been

determined that an approximately i:i mixture of O2:He at i000 psi total

pressure is an optimum gas mixture for Q-switched YAGlasers with 250-300

mJ/pulse energy operating at 5-10 Hz repetition rate. The helium buffer

serves to diffuse heat which is built-up along the beam waist due to the

vibrational excitation which occurs as part of the conversion process. The

total pressure must be fairly high because the Ramangain of oxygen is

relatively low (less than 1/100th of H2, for example, at STP).

Figure I shows ist Stokes conversion efficiency (e) and fractional loss (o)

as a function of input laser energy for 1.0, 1.5, and 2.0 m focal length

focusing lenses, using the 2 m cell with a 450:550 psi O2:Hemixture. All

data is taken using the second harmonic of a Nd:YAGlaser at 0.532 microns,

with "I0 nsec pulse duration and a repetition rate of i0 Hz. As discussed

in Reference 2, the laser is operated in its broad-band modewhich results

in a linewidth of -I cm-I. This, combined with a relatively long confocal

beam parameter, serves to suppress stimulated Brillouin backscatter (SBS)

which competes with the Ramanconversion. As can be seen, use of the I m

focal length lenses results in significant SBS energy loss (-60%) for all

but the lowest input pulse energies. The corresponding conversion

efficiency ranges from <1% at 65 mj/pulse to -5% at 350 mJ/pulse.

Increasing the focal length of the focusing lens to 1.5 m results in an

increase in the conversion efficiency to -8-9%, and a drop in the energy

loss to -20%. This configuration, with -250-300 mJ of input energy is now



b. Other Cells

Limited experiments have been performed with a 6 m cell which was

constructed by bolting three 2 m segments together, and a cylindrical multi-

pass cell, based on an optical configuration used by Long, et al. (3) for

increasing the sensitivity of Rayleigh scattering measurements. The 6 m

cell, despite being certified to only 600 psi total pressure, gave a single-

pass conversion using a 4 m focal length input lens in the 11-12% range.

The SBS loss was negligible. The cylindrical cell gave the highest

conversion efficiency ('30%) of all the cells used, but the repetition rate

was limited to I Hz. The windows of this cell are 2" (-1-1/2" unsupported),

so that the total working pressure is limited to 500 psi. Due to the multi-

pass arrangement and the cylindrical focusing, thermal beam degradation is

more significant in this cell, resulting in the low repetition rate. (It

is anticipated that increasing the helium buffer partial pressure would

result in someimprovement.)

2. Pressure-Shifting Measurements

At the high pressures required for operation of the 02 Raman cell, it is

important to verify that the Ist Stokes frequency overlaps with that

corresponding to 02 at near i atm conditions. In order to verify this, we

have performed simple scanning coherent anti-Stokes Raman spectroscopy

(CARS) Q-branch measurements in the high-pressure cell and ordinary room

air, simultaneously. As discussed in Reference 2, at high pressure, the

individual rotational lines within the vibrational Q-branch merge into one

feature. The results of these measurements are summarized in Figs. 3a and
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3b. From Fig. 3a, which corresponds to pure 02 at 450 psi, the high-

pressure Q-branch overlaps almost perfectly with the J=7 transition at room

conditions. In the 450:550 psi 02:He mixture of Fig. 3b, the high-pressure

Q-branch has shifted slightly (-0.3 cm °I) and now peaks approximately midway

between the J=7 and J=9 transitions at room conditions. Since the Nd:YAG

pump beam has a spectral width of "I cm -I, these results indicate that the

Ist Stokes output from the cell should efficiently pump oxygen molecules in

the J=7 and J=9 rotational levels.

B. Ultra-Violet Flashlamp Development

We have performed some limited additional work on the development of a high

brightness, ultraviolet flashlamp for use as a flow interrogation source. A

schematic of an earlier lamp design is shown in Fig. 4. The lamp, based

upon a design of Holzrichter and Emmett (4), is a windowless, coaxial

discharge lamp which uses flowing helium gas. In a prior reporting period

(5), we measured the spectral and spatial light output of the lamp and

obtained an estimated effective blackbody temperature of -25,000 K.

During this work period, it was determined that a significant amount of

energy was dissipated across the spark gap, and that the spark gap was also

a significant source of inductance. Removal of the spark gap resulted in a

decrease in the pulse duration, and a large increase in the UV pulse energy.

In the last report, a pulse energy of 0.06 mJ (in an -I0 nm spectral band

centered at 185 nm), and a pulse duration of -12 microseconds was obtained

using a 2 _F capacitor and 8 KV charging voltage with helium flow gas. Upon

removal of the spark gap, using a 5 F capacitor and a 5-6 KV charging
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voltage, the pulse duration was reduced to -5 microseconds, and the UV pulse

energy in the same band was increased to greater than 1 mJ/pulse. These

pulse energies are measured with a pyroelectric joulemeter, purchased with

previous funding for this research. The energies represent net numbers,

obtained by subtraction of measured energies without nitrogen pumping of the

optical system, from measured energies including purging. The spectral

filtering of the very broad band lamp output is performed with a pair of ArF

lasers 193 nm high reflectors tilted off-axis to shift the peak of the

reflectivity. This is illustrated in Fig.

configuration and the measurement location.

spectral band.

5, which shows the optical

Figure 6 shows the resulting

Spectral scans were performed using the optical set-up of Fig. 5, but with a

purgable spectrometer in place of the joulemeter. Figure 7 shows two

traces, the upper being with a nitrogen purge, the lower without. The

spectrometer does not have a UV grating, and so the sensitivity falls off

rapidly with deceasing wavelength. It is clear, however, that the flashlamp

is producing significant light flux in the 185 nm region.

This increased vacuum UV intensity has enabled us to obtain, for the first

time, RELIEF images of vibrationally excited oxygen using the Raman cell to

tag, and the flashlamp to interrogate. A typical pair of images is

illustrated in Fig. 8. The flashlamp optical set-up is similar to that of

Fig. 5, except that the 50 mm focusing lens was positioned as close as

possible to the inner wall of the purgable enclosure. (The air path between

the lens and the focus was not purged.) The focal volume of the flashlamp
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output was approximately cylindrical, 3mmin diameter by 1-2 cm long. The

tagging beams from the Ramancell were focused with a 300 mm lens, and

intersected the flashlamp interrogation volume at a slight ('5 ° ) angle. The

resulting images were captured at 90° with respect to the tagging beams

using a UV-intensified CID camera and a Corning 7910 glass filter. It was

found that this filter, while decreasing the signal, increased the contrast

between the tagged line and the background.

The images in Fig. 8 appear fuzzy due to the relatively long exposure time

from the flashlamp. There is also significant background from 02 Schumann-

Runge fluorescence, which has a large cross section in the 180-185 nm

region. It is anticipated that further work will allow us to significantly

improve upon the quality of these images.

SUMMARY AND FUTURE WORK

The Raman cell has been developed and characterized to the point where it is

now the method-of-choice for 02 flow tagging. It is routinely used in two

of our laboratories, and a cell has been constructed and operated at NASA-

Langley Research Center. The output of the UV flashlamp has been increased

by more than a factor of ten, and the first RELIEF images of vibrationally

tagged oxygen have been obtained.

Future work, contingent upon continued support, will focus on collaboration

between Princeton and NASA-Langley in performing flow tagging measurements

in NASA LARC facilities. Further development of the UV flashlamp, with the

goal of improved sensitivity, contrast, and timing, is also anticipated.
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TABLE I

SUMMARY OF CELLS INVESTIGATED

Cell fL Pulse Gas Mix %1st Emax

Duration (O2:He) Stokes

1. 2 m 2 m 10 nsec 450:0 3-4% 50 mJ

2. 2 m 1-2 m 10 450:550 4-9% >250 mJ

3. 2 m 1 rn 5 450:550 89 >250 mJ

4. 2 m (2 passes) 400:600 -1 7% >220 mJ

5. 6 m 4 m 10 200:400 11-12% >250 mJ

6. 1 m (Cylindrical Multipass . 9 passes. Limited to 1Hz)

10 400:100 -30% >250 mJ
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Figure i. ist Stokes Conversion Efficiency (o) and Fractional Loss (o)

as a Function of Laser Pulse Energy for 1.0, 1.5, and 2.0 m

Focusing Lens.
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Figure 2. Single Pass (+) and Double Pass (o) 1st Stokes Conversion

Efficiency for 5 nsec Pulse Duration Laser. The Cell Length

is 2.0 m and Focusing Lens Focal Length is i m.
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Figure 3a. Experimental CARS Spectra for Pure O_ at 450 psi (Upper Trace),

Along with Room Air Reference (LowerZTrace).
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Figure 3b. Experimental CARS Spectra for Mixture of 450 psi 02 and
550 psi He (Upper Trace), Along with Room Air Reference
(Lower Trace).
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Figure 4. Schematic Diagram of Original Version of Coaxial UV Flashlamp.
The Spark Gap has been Removed from the Current Version.
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Figure 5. Scherm_tic Diagram of Flashlamp Optical Filtering and UV
Energy Measurement.
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Figure 8. Selected Images of Displaced Lines Using Raman Cell for Tagging

and UV Flashlamp for Interrogation.


